On designing an active tail for legged robots: simplifying control via decoupling of control objectives
نویسندگان
چکیده
This work explores the possible roles of active tails for steady-state legged-locomotion. A series of simple models are proposed which capture the dynamics of an idealized running system with an active tail. The models suggest that the control objectives of injecting energy into the system and stabilizing body-pitch can be effectively decoupled via proper tail design: a long, light tail. Thus the overall control problem can be simplified, using the tail exclusively to stabilize body-pitch: this effectively relaxes the constraints on the leg-actuators, allowing them to be recruited specifically for adding energy into the system. We show in simulation that models with long-light tails are better able to reject perturbations to body-pitch than short-heavy tails with the same moment of inertia. Further, we present the results of a one degree-of-freedom tail mounted on the open-loop controlled quadruped robot Cheetah-Cub. Our results show that an active tail can greatly improve both forward velocity and reduce body-pitch per stride, while adding minimal complexity. Further, the results validate the long-light tail design: shorter, heavier tails are much more sensitive to configuration and control parameter changes than longer and lighter tails with the same moment of inertia.
منابع مشابه
Energy Dissipation Rate Control Via a Semi-Analytical Pattern Generation Approach for Planar Three-Legged Galloping Robot based on the Property of Passive Dynamic Walking
In this paper an Energy Dissipation Rate Control (EDRC) method is introduced, which could provide stable walking or running gaits for legged robots. This method is realized by developing a semi-analytical pattern generation approach for a robot during each Single Support Phase (SSP). As yet, several control methods based on passive dynamic walking have been proposed by researchers to provide an...
متن کاملRaptor 2: Design of fast biped robot for 3D environments us- ing active tail stabilization
1. Motivation Legged robots will need to be fast, robust and efficient for real world applications. In this research, we aim to design a high speed bipedal running robot on 3D environments based on active tail stabilization method, Raptor 2 robot. 2. State of the Art Many legged robots have been studied and developed so far, but only a few robots have achieved stable fast legged locomotion. In ...
متن کاملStiffness control of a legged robot equipped with a serial manipulator in stance phase
The ability to perform different tasks by a serial manipulator mounted on legged robots, increases the capabilities of the robot. The position/force control problem of such a robot in the stance phase with point contacts on the ground is investigated here. A target plane with known stiffness is specified in the workspace. Active joints of the legs and serial manipulator are used to exert the de...
متن کاملOn Attitude Dynamics and Control of Legged Robots Using Tail-Like Systems
In this work we study the attitude dynamics and the control of legged robots using tail-like appendages during the aerial phases of high speed locomotion. A free floating two-body system is used to describe the dynamics of a large body controlling its attitude using a rotating appendage. The equations of motion for a tail and a reaction wheel are given, and the meaning of the generalized coordi...
متن کاملModeling and Control of Legged Robots
The promise of legged robots over standard wheeled robots is to provide improved mobility over rough terrain. This promise builds on the decoupling between the environment and the main body of the robot that the presence of articulated legs allows, with two consequences. First, the motion of the main body of the robot can be made largely independent from the roughness of the terrain, within the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Industrial Robot
دوره 43 شماره
صفحات -
تاریخ انتشار 2016